MS Access Back-End Re-Link Utility

User Notes

Version 1.1
For Microsoft Access 2000 (or later)

Introduction

This code is intended for the situation where you, as the developer, have set up a split database for a client which you have installed on his PC. Whenever you update the database with new facilities you would send a new copy of the front-end file to your client who replaces his existing front-end file/s with the new version.

It is possible (in fact more than likely) that the back-end file will be at a different location on their hard disk than it is on yours. This means that the pathnames stored in the front-end will be different and so the tables have to be re-linked to the back-end file before he can use the new version of the database.

This code is designed to do that automatically when the client runs the database program.

How It Works

The method used to re-link the two files is to initially create a small .ini text file, in the same folder as the front-end file, which holds the full path and filename of the back-end file/s. Every time the database is run, the code checks if the pathname to the back-end file (which is stored in the front-end file) is valid, i.e. that there is a file with the correct name at the specified location. If the file exists no action is taken and the program continues as normal, if the back-end file cannot be found (indicating that the front-end file is now being used on a different PC) then the tables are re-linked to the back-end file as specified in the .ini file. No action is required by the database user although a message is displayed to show that the re-link operation is in progress.

The very first time the database is used there will be no .ini file, of course. If the database is run, and there is no .ini file found in the same folder as the front-end file, a standard Office File Selector dialog is displayed requesting the user to locate the back-end file on their system. This could be on the local hard disk for a small system or on the Server PC for a network system. When the user finds the back-end file and clicks the Open button, the .ini file is created and saved to disk and then the front-end file is automatically linked to the tables in the back-end file. The .ini file is given the same name as the database file, for example, MyDatabase.ini where the front-end file is called MyDatabase.mdb or MyDatabase.mde.

If the user should cancel the File Selector dialog the application is immediately aborted.

When the re-linking operation is in progress the message :-

“Relinking Tables to File C:\Folder\File.mdb”

is displayed in the Status Bar at the bottom of the screen (if it is enabled) where C:\Folder\File.mdb is the pathname and filename of the back-end file.

Note that this code assumes that the front-end file is linked to only one back-end file, if you have more than one back-end file you would need to modify the code considerably for it to work correctly.

The code also includes the facility to link to an alternative back-end file if the normal back-end file is not available. Suppose, for example, your users are entering data into a database on a laptop PC which is only connected to the main PC when they return to the office, if the laptop is not connected to the main PC when you run the database you will just receive error messages if there is no back-end file to re-link to. With this code you would have a copy of the back-end file on the main PC (or on the Server PC, if running on a network system) so that if the database is opened and the laptop PC is not available, the database front-end will then re-link the tables to the back-end file on the main PC. The .ini file will hold the locations of the laptop PC back-end and the main PC back-end files (in that order) so that if the first one is not available it will automatically re-link to the second one instead. In fact, you could have as many alternative back-end files as you like. Of course, you would need to keep the data in the back-end files synchronised all the time, but that is another matter.

Installing the Re-Link Code
To use this code import the two modules modLinkages and modFileSelect into your database project from the supplied Back End Linker.mdb file (and back up your database front-end file first, just in case). The modLinkages module holds the linking code and the modFileSelect module holds the code for the File Selector dialog form.
This code is taken from the Web site :- http://www.mvps.org/access/api/api0001.htm so if you have already imported that code, or have some similar code which can display a File Selector, then you probably do not need to import this module. In this case, however, you may need to modify the GetBackEndFilePath function to return the full path and filename of the back-end file or a NULL string if the user cancels the File Selector dialog.

Before you import the code modules it would be a good idea to compile your project (see Debug -> Compile in any code module) to make sure that there are no code errors and then do it again after you have imported the modules to ensure that there are no duplicate label names, etc.

To call the function from your program add the following line to the Form_Open event of the start up form in your project. This will normally be the form specified in the Display Form/Page: field on the Start Up dialog form. If you are running some AutoExec code or a Macro at start up, you should insert this line of code as the first function to run since you need to re-link the tables before anything else happens.
Private Sub Form_Open(Cancel As Integer)

 If CheckLinks("TableName") = False Then Application.Quit

 (other code here, if required)

End Sub

Where TableName is the name of one of your tables in the back-end file (include the double quotes). That is basically all you need to do in your database project.
Setting Up the Links

When you have imported the modules and added the start up line of code you can test the code on your own system, exit your database and then run it again. You should see the File Selector form displayed, locate your back-end file and click the Open button, the form will be closed, the tables will be re-linked and the database will then run as normal. You should also see a new file with the same name as your database and a file extension code of .ini in the database folder. If you exit the database and run it again, this time the database should run normally without any re-linking.

When you install your database on your client’s system you will need to perform a similar operation. Suppose you have got the re-link system working on your own PC and you now need to do the same on the client’s system. You would replace the client’s current front-end file with your new one and then run the database program, if the client has a number of PCs on a network then you will need to do this on every PC (but you will only need to do this once). Note that if the client database is working on a network system you must have a separate front-end file on each PC which are all linked to the back-end file on a Server PC.

When the database is run the File Selector form will be displayed because the path to the back-end file will be different from the path stored in the front-end. As before, locate the back-end file and click Open, if the PC is on a network make sure that you locate the back-end file using the UNC system (click the My Network Places option on the File Selector form). See this Web site for more information on UNC http://www.members.shaw.ca/AlbertKallal/Articles/split/ If you open the .ini file for a PC on a network, the pathname should look something like this :-

 \\servername\DBFolder\mydatabase_be.mdb

Once you have set up the path, the database should run as normal. Now, each time you update the front-end files for the user, the re-linking process will happen automatically (the users will see a message and progress bar in the Status bar whenever this happens). Repeat the above for each PC on the network, if necessary. Note that if you have a front-end file on the same PC that holds the back-end file, then you should not use the My Network Places option on the File Selector form, just navigate to the file and folder in the normal way.
Alternative Back-End Files
As mentioned above, you can set up this system to use alternative back-end files (note that this does NOT mean having the front-end files linked to two or more back-end files at the same time). Suppose you have one back-end file which is the primary file, i.e. the one you would normally want to use, and a secondary back-end file which you want to link to when the primary one is not present on the system.

What you should do, when you set up the database front-end files on your client’s system, is to first make sure that BOTH back-end files are present. Next, make sure that there is no .ini file in the front-end folder and then run the database for the first time with the new front-end and when the File Selector form is displayed, locate the primary back-end file and run the database and make sure that everything is working correctly with the primary back-end data.

Now close the database and remove the primary back-end file (you could just rename it temporarily) and run the database again. The File Selector will be displayed again (since it cannot find the primary back-end file) and this time locate the secondary back-end file and run it as normal (if you open the .ini file with a text editor now you will see the pathnames for both back-end files are listed there). Now restore the primary back-end file so that the user can use it as normal.

Now, every time the user runs the database it will open the primary back-end file, as normal, if it is available on the system. If the primary back-end is not available, the front-end file will automatically be connected to the secondary back-end file for that session and when the primary back-end is restored, the front-end will be re-linked to that file. You must make sure, of course, that you do NOT disconnect the back-end file from the system when the database is in use, this code only re-links when the database is started.
When a new version of the front-end file is used to replace an existing one, the code will re-link it to whichever back-end is currently available.

VBA Re-Linking Code Notes

The modLinkages module contains the VBA code for the re-linking operation, there are numerous embedded comments which show how it all works.

Additional Notes.

1. The code assumes that the database file has the extension code .mdb or .mde. If you are using a different extension code (such as accde or accdb) you may need to modify the code in the first part of the CheckLinks function code accordingly (i.e. where the .mdb extension is replaced with the .ini extension code).

2. When re-linking the tables the code would normally assume that all the tables in the back-end have corresponding table links in the front-end. However, if you are using any back-end update code which automatically creates a new table in the back-end using embedded VBA code, it is possible that a link to a table will be present in the front-end file but the corresponding table may not yet be present in the back-end, in this situation Access will generate a 3011 error code. If you have some code which will create the missing table in a later operation you will not want the re-link code to stop at this point so the CheckLinks routine will ignore this error and continue with the re-link operation. If you do not want this to happen you should remove the line of code which ignores the 3011 error, i.e. the line If Err = 3011 Then Resume Next after the ErrorCode: label. See below for more information on a Back End Update utility which you can use to add new fields and tables to your back-end file automatically.

3. You should also ensure that a reference is created to the Microsoft DAO 3.6 Object Library if it isn’t already.

4. If you are using your own File Selector code you should replace the code in the GetBackEndFilePath function with code which will open a File Selector and return the full path and filename of the back-end file (or a Null string if the user cancels the File Selector) and copy it into the GetBackEndFilePath variable.

5. If anything should go wrong with the re-linking operation at your client location (for example, a corrupted Network link, back-end file, etc) it is possible for the front-end links to be corrupted and some tables may not be linked correctly. The first thing to do is to instruct your client to delete the .ini file and run the database again. When the File Selector is displayed, he should locate the back-end file and re-link the tables as described above. This should refresh all the table links properly. If that doesn’t work then he should replace the front-end file with a known good copy, delete the .ini file (as the links may be invalid for his installation) and repeat the procedure described above.

Back-End Update Utility

As a developer you may also need to add more fields or tables to the back-end file of your client’s database. If it is difficult to visit the client location then you can add code to your database which will automatically add/delete fields or tables to the client’s back-end file when he runs the database. See this Web site for more information and to download the utility program.

http://www.rogersaccesslibrary.com/forum/forum_posts.asp?TID=410
The function call to the Back End Update routine should be placed immediately after the call for the re-link function (and the error detection code mentioned in paragraph 2 above should NOT be removed).

This code has been tested on Access 2000 – 2007 but will not work on Access 97 (since it uses the Split function which is not available in Access 97). It should also work on Access 2007 but the ini extension code may need changing.

Front-End Updater Utility

If you are updating the front-end files at a client on a regular basis, it is usually easier to use a Front End Update facility which will do that automatically. All you need to do, once the update utility program is set up on the client’s system, is to send a new version of the front-end file which the user copies into a specified folder on the Server PC and whenever a user runs the database, the new front-end is copied to their PC automatically which then runs the database as normal. There are several examples of this type of program on the Web, see this site for a simple one.

http://www.rogersaccesslibrary.com/forum/forum_posts.asp?TID=409
Contact

Any bug fixes or comments about this code can be sent to me at pdh_software@btinternet.com
Peter Hibbs.

31-1-2009.

Acknowledgements

Ken Getz and Paul Litwin. Waite Group Press, 1996 for providing the Office File Selector code.

History

Version 1.0
20 April 2007.

First version.

Version 1.1
31 January 2009

Start up code changed to check if back-end file exists and, if not, link to next back-end file specified in .ini file.

Connection to back-end file established prior to linking to speed up linking on network system.

