Action Queries
By Roger Carlson

Contents

2Delete Queries

4Running an Action Query

4Update Queries

7Append Queries

8Make-Table Queries

Action Queries

Action Queries, also known as Data Manipulation Language (DML) statements, do not return a dataset like Select Queries, but makes changes to the data in the base tables. There are four types of action queries: Delete Queries, Update Queries, Append Queries and Make-Table Queries.

Delete Queries

As the name suggests, Delete Queries delete records from a record source, that is, a table, a join, or another query. The record source must be updateable. (See This Recordset Is Not Updateable. Why? For details about updateability.)

At its simplest, a delete query will delete all records from the table:

DELETE * FROM Books;
But in most cases, you probably want to some subset of all the records. For that, you restrict your records with a Where clause, just as with a Select Query. Suppose I wanted to delete all the records from a particular publisher:

DELETE * FROM Books WHERE PubID=1;

In the Query Builder, I generally suggest creating a Select Query for the records you want to delete:

[image: image1.jpg]EtemaDuts DtaboseTonk | Design

54 A o o
it st vt e ST

s
\

Socks

And then convert it to a Delete Query using the Ribbon (or Toolbar in Access 200X):

[image: image2.jpg]

Now, suppose you are given a list of ISBN numbers that you need to delete from your table. If that list is in a table (DeleteList), you can delete the records from your Books table with a subquery using the IN operator, like this:

DELETE ISBN FROM Books
WHERE ISBN In (Select ISBN from DeleteList);

In the query builder, it looks like this:

[image: image3.jpg]

The Select subquery will create a list for the IN operator to supply ISBN numbers to the Delete query.

Running an Action Query

Running an Action Query is a little different than running a Select Query. With a select query, the View and Run buttons [image: image4.png]

do exactly the same thing: display the results of the query. With Action Queries, however, the two buttons do different things. The View button displays the results of the query, that is, which records will be deleted, updated, inserted, or appended. The Run button actually executes the action.

Update Queries

An Update Query will make bulk changes to records in the record source. At its simplest, it will make changes to every record. For instance, suppose I want to raise the Price of every book in the Books table by 10%. I could create a SQL statement like this:

UPDATE BOOKS SET Price = Price*1.1;

In the Query Builder, it looks like this:

[image: image5.jpg]DB Query

EE T [R
- X - - x @ Fass-Trough
ueny Type

BO0KS.

9 o
e
P>
Price

<l

free [once =

Table: B0OKS

UpaateTo [pricenL1
Cuters:

i

But it's not very often you want to update every record. Usually, you want to update just certain records. To do that, you add a Where condition just as you would in a Select Query (see: Select Queries Part 2: Restricting Rows - the Where Clause). Suppose I wanted to change every book whose price was $25 to $24.95. My SQL statement would be as follows:

UPDATE Books SET Price = 24.95
WHERE Price=25;

Which looks like this in the Query Builder:

[image: image6.jpg]LERES

uery To

Cete Duemaiss DatabsseToo | Desan

R B O

[— crosstan Dette
Table o2 0ata Defintion

L ey e

pass-mrcuan query

3 artipdatebr - Lt
Rar »
et [rce prce
Tabie: | Books Books
UpdateTo: (2495
Gitera: =

Rim >

Updating from a List

But what if, as I did with the Delete query, you are given a list of ISBN numbers and associated new prices? How could you update your Books table from this list? You SHOULD be able to use a subquery. Something like this:

UPDATE Books SET Books.Price =
(SELECT price FROM UpdateList
 WHERE Books.ISBN = UpdateList.ISBN)
WHERE ISBN
 In (SELECT ISBN FROM UpdateList
 WHERE Books.ISBN = UpdateList.ISBN);
Unfortunately, while you could do this in almost any other SQL implementation (SQL Server or Oracle, for instance) you cannot do this in Access SQL. It will give you the "Operation Must Use an Updateable Query" error.

Fortunately, there are a couple of workarounds. One is to use a Join and the other is to use a Domain Aggregate function.

Workaround 1 - the Join

This work around requires you to Join the Books table with the UpdateList table, like this:

UPDATE Books INNER JOIN UpdateList
ON Books.ISBN = UpdateList.ISBN
SET Books.Price = [Updatelist].[price];

In the QBE:

[image: image7.jpg][Fopsaic

|

One caveat here is that the Join MUST be an updateable dataset, so there must be a unique index on the Join field (in this case ISBN).

Workaround 2 - DLookup
This work around uses a subquery in the Where clause, but uses a DLookup function in the Set clause:

UPDATE Books SET Books.Price =
DLookUp("Price","UpdateList","ISBN ='" & [ISBN] & "'")
WHERE Books.ISBN
In (SELECT ISBN FROM UpdateList
WHERE Books.ISBN = updateList.ISBN);
[image: image8.png]Clste Edsmaioata DasbsseTook | Desgn

@R u! W R X OB e | =
e s ropen s oese e o | <000 X oot o EEE

Quenpe Quey

» Showmis

37 UpdsteFiomList Dlsokup ——

K)
Feis: [0 [=ison 2
Table: | Books Books

UpdateTe: | Dlooktp(Pice!, Updtelist 158N =" & 158 &)

Caten: n (SELECTISBN FROM Update st WHERE Books IS = upsatest 58
< >

This solution does not require a unique index, but it is much slower than the Join solution.

Append Queries

An Append Query, also called an INSERT INTO in SQL, adds records to a record source (table or query). It can either append individual record values or a dataset queried from another record source. To append values, use the VALUES keyword:

INSERT INTO Books(ISBN, Title, PubID, Price)
VALUES ("0-103-45678-9", "Iliad", 1, 23);

Unfortunately, this type of Append query cannot be made in the Query Builder. In fact, if you type it into the SQL View of a query and switch to the Design View, the query will be converted to this:

INSERT INTO Books (ISBN, Title, PubID, Price)
SELECT "0-103-45678-9" AS Expr1, "Iliad" AS Expr2, 1 AS Expr3, 23 AS Expr4;

This alternate syntax will still work in Access, but it's not standard SQL syntax. This type of Append query is most useful when used in embedded SQL, that is, SQL statements that are executed in a VBA module. One common use is with unbound forms.
For example, suppose I have a form with unbound controls, like Figure 6.

[image: image9.png]B .

[—
P:: L aspendvaues|
L —

Behind the Append Values button, I can have the following code:

Private Sub cmdAppendValues_Click()
 Dim strSQL As String
 strSQL = "INSERT INTO Books(ISBN, Title, PubID, Price)" & _
 " VALUES ('" & Me.ISBN & "', '" & Me.Title & "', " & _
 Me.PubID & "," & Me.Price & ");"
 CurrentDb.Execute strSQL, dbFailOnError
End Sub

Clicking the button will execute an SQL statement that appends the values from the unbound controls (i.e. Me.ISBN, etc.) in the form into a new record of the table.
The second type of append query queries a dataset from one record source and appends it to another. This is most useful when importing data from an external source (say an Excel spreadsheet or a CSV file) to be added to an existing table. Suppose I have a table of new books (called AppendList) to be added to the Books table. I can use the following SQL statement:

INSERT INTO Books (ISBN, Title, PubID, Price)
SELECT ISBN, Title, PubID, Price
FROM AppendList;

Or as seen in the QBE grid:
[image: image10.png]

Make-Table Queries

A Make-Table Query is a shortcut method to create a table based on values in another table. In SQL, it's called a SELECT INTO statement. The basic syntax looks like this:

SELECT ISBN, Title, PubID, Price INTO BooksTemp
FROM Books;

In the Query Builder:

[image: image11.png]FEN+ A B Ko g T 4

T ——
EnTTs —

mem o

e x L}

In properly normalized databases, there aren't a lot of uses for the Make-Table Query. It's most important use is for creating temporary tables. Sometimes, complex queries can be simplified or their performance improved by creating a smaller, temporary table. The Make-Table is ideal for this application.

However, make-table queries do have some disadvantages. First of all, they tend to bloat the database. Every time you make a temporary table, your database grows. When you delete it or over-write it, the database doesn't automatically shrink. This will require that you periodically compact your database.

Secondly, you don't have a lot of control over the structure of a table made with a make-table query. These tables automatically inherit the field datatypes and sizes from the parent table, but it does not inherit any other field properties (like validation rule or defaults), nor does it inherit any indexes.

