How do I do a COUNT DISTINCT in Access?
Table of Contents

1Introduction

2From Clause Method

6Field List Method

9User-Defined Field Method

12Crosstab Query Method

13Pros, Cons, and Performance

Introduction

SQL Server has a nice built-in function called COUNT DISTINCT, which is missing in Access SQL.

What does COUNT DISTINCT do? Well, there are times when you want to count distinct values in a query, that is, a count of values without duplicates. For instance, given the following table, how many distinct customers have orders?

ORDERS
	OrderID
	OrderDate
	Customer
	Amount

	1
	1/17/2008
	Ajax Inc.
	$310.00

	2
	1/17/2008
	Ajax Inc.
	$510.50

	3
	1/17/2008
	Ajax Inc.
	$311.00

	4
	1/17/2008
	Baker Corp.
	$5,144.00

	5
	1/17/2008
	Baker Corp.
	$61.00

	6
	1/17/2008
	Baker Corp.
	$110.50

	7
	1/17/2008
	Baker Corp.
	$11.00

	8
	1/17/2008
	Crystal & Co.
	$111.85

	9
	1/17/2008
	Crystal & Co.
	$511.00

	10
	1/18/2008
	Baker Corp.
	$711.95

	11
	1/18/2008
	Baker Corp.
	$810.00

	12
	1/18/2008
	Baker Corp.
	$310.59

	13
	1/18/2008
	Crystal & Co.
	$311.00

	14
	1/18/2008
	Crystal & Co.
	$811.50

	15
	1/18/2008
	Ajax Inc.
	$512.00

	16
	1/18/2008
	D&D LLC
	$211.00

	17
	1/18/2008
	D&D LLC
	$3,311.50

	18
	1/19/2008
	Ajax Inc.
	$410.00

	19
	1/19/2008
	Ajax Inc.
	$610.50

	20
	1/19/2008
	Baker Corp.
	$4,411.00

	21
	1/19/2008
	Baker Corp.
	$511.50

	22
	1/19/2008
	Baker Corp.
	$611.50

In SQL Server, I can do this:

SELECT COUNT(DISTINCT Customer) AS CountOfCustomer FROM Orders
Which will give me the following:
	CountOfCustomer

	4

In Access, if I use the Distinct predicate with the count:

SELECT DISTINCT Count(Customer) AS CountOfCustomer FROM Orders;
I get:

	CountOfCustomer

	22

Since Access SQL does not have the Count Distinct function, what can I do?

There are actually four different methods for simulating the Count Distinct:

1. Subqueries in the FROM Clause
2. Subqueries in the Field List

3.

 HYPERLINK \l "_User-Defined_Field_Method"

User-Defined Function

4. Crosstab Query
Each of these methods has advantages and disadvantages, and I'll address each in turn. This time I'll start with using a subquery in the FROM clause

From Clause Method

Subquery in the FROM Clause Method
Using a subquery in the FROM cause restricts the pool of values for aggregating in the main query. The main advantage is that it's fairly easy to figure out. The main disadvantage is lack of flexibility.

Note: I have a couple of choices for using subqueries. They can be used either in-line or stacked. What's the difference? In the stacked query method, the individual subqueries are saved as named queries and then referenced by name in later queries. In the in-line method, they are all combined into a single SQL statement.

I find it useful to create use the stacked query method to develop and combine them into a single statement once I've got it working correctly. It also gives me a method of checking my results.

Problem 1:
So, back to my original problem. First, I create a simple aggregate query, grouping the customers:

SELECT Customer FROM Orders GROUP BY Customer;
Result:

SimpleStep1 (saved query)

	Customer

	Ajax Inc.

	Baker Corp.

	Crystal & Co.

	D&D LLC

I'll save that as SimpleStep1. Then I'll use SimpleStep1 in the FROM clause for a second query:

SELECT Count(Customer) AS CountOfCustomer FROM SimpleStep1;
SimpleStep2
	CountOfCustomer

	4

Combining these into a single query:

SELECT Count(Step1.Customer) AS CountOfCustomer
FROM (SELECT Customer FROM Orders GROUP BY Customer) AS Step1;
SimpleCombined
	CountOfCustomer

	4

Note: the alias "Step1" could be anything at all, even "A". I used "Step1" to illustrate how the queries are related.
More Complex Queries: Problem 2
This is all well and good, but, unfortunately, this is only useful in limited situations. If I wanted a more complex query, say, how many customers per day:

	OrderDate
	CountOfCustomer

	1/17/2008
	3

	1/18/2008
	4

	1/19/2008
	2

it is much more difficult.

SQL Server
With COUNT DISTINCT, in SQL Server, I can just add an additional field to the Field List and Group By clauses.

SELECT OrderDate, COUNT(DISTINCT Customer) AS CountOfCustomer FROM Orders
GROUP BY OrderDate;
Access
If I try to do the same thing in Access,

SELECT OrderDate, Count(Step1.Customer) AS CountOfCustomer
FROM (SELECT Customer FROM Orders GROUP BY Customer) AS Step1
GROUP BY OrderDate;
I get a parameter box asking for OrderDate:

In retrospect the reason for this if fairly obvious. I'm using a GROUP BY in the subquery in the FROM clause to limit the values available and OrderDate isn't in the field list.

So to fix it, I have to add OrderDate to both the subquery and the main query:

SELECT Step1.OrderDate, Count(Step1.Customer) AS CountOfCustomer
FROM (SELECT OrderDate, Customer
 FROM Orders GROUP BY OrderDate, Customer) AS Step1
GROUP BY Step1.OrderDate;
And I get the same result:

	OrderDate
	CountOfCustomer

	1/17/2008
	3

	1/18/2008
	4

	1/19/2008
	2

Even More Complex Queries: Problem 3
But suppose I want an even more complex query. Suppose I want to see a distinct count of the Customers AND a count of the number of orders for each date?

In SQL Server, I can simply add my additional aggregrate function (CountOfOrders) to the Field List:

SELECT OrderDate, COUNT(DISTINCT Customer) AS CountOfCustomer
 COUNT(OrderID) AS CountOfOrders
FROM Orders
GROUP BY OrderDate;

In Access, if I try to do the same thing:

SELECT Step1.OrderDate, Count(Step1.Customer) AS CountOfCustomer,
 COUNT(OrderID) AS CountOfOrders
FROM (SELECT OrderDate, Customer
 FROM Orders GROUP BY OrderDate, Customer) AS Step1
GROUP BY Step1.OrderDate;
once again, I'll get the parameter box but this time asking for the OrderID.

The reason is the same because OrderID is not in the record source. So I'm going to have to modify the record source to add it. I'll start with the stacked query method and then combine them.

StackedStep1
SELECT Orders.OrderDate, Orders.Customer
FROM Orders
GROUP BY Orders.OrderDate, Orders.Customer;
StackedStep2
SELECT OrderDate, Count(Customer) AS CountOfCustomer
FROM StackedStep1
GROUP BY OrderDate;
StackedStep3
SELECT Orders.OrderDate, Stackedstep2.CountOfCustomer,
 Count(Orders.OrderID) AS CountOfOrderID
FROM Stackedstep2 INNER JOIN Orders ON Stackedstep2.OrderDate = Orders.OrderDate
GROUP BY Orders.OrderDate, Stackedstep2.CountOfCustomer;
Which gives me the following:

	OrderDate
	CountOfCustomer
	CountOfOrderID

	1/17/2008
	3
	9

	1/18/2008
	4
	8

	1/19/2008
	2
	5

Combining them into a single query:

SELECT Orders.OrderDate, step2.CountOfCustomer,
 Count(Orders.OrderID) AS CountOfOrderID
FROM (SELECT OrderDate, Count(Customer) AS CountOfCustomer
 FROM (SELECT OrderDate, Customer FROM Orders
 GROUP BY OrderDate, Customer ORDER BY OrderDate) AS step1
 GROUP BY OrderDate) AS step2
 INNER JOIN Orders ON step2.OrderDate = Orders.OrderDate
GROUP BY Orders.OrderDate, step2.CountOfCustomer;
Fun, huh?

I think you can see that while modifying the FROM clause allows me to get the right answer, it's a lot of work and not very flexible, that is, it's not simple to add additional levels of grouping. That's because I'm removing duplicates from the record source itself. It would be better if I could leave the record source alone and simply remove the duplicates from the count. This is exactly what the Field List method does.

Field List Method

One problem with the FROM Clause method is its lack of flexibility, that is, it's not simple to add additional levels of grouping. That's because you're removing duplicates from the record source itself. It would be better if I could leave the record source alone and simply remove the duplicates from the count. This is exactly what the Field List method does.

Subquery in the Field List Method
With the FROM Clause method, I worked from the inside out, that is, I started with the inner queries and developed more complex queries based on the previous ones. But that won't work well with the Field List Method. With this method, I'll work from the outside in. I also can't use the Query Builder grid very well (although the final query will be viewable in it), so this will mostly be SQL.

I'll start with the query that I though should have worked but didn't:

SELECT OrdersMain.OrderDate, Count(Customer) AS CountOfCustomer
FROM Orders AS OrdersMain
GROUP BY OrdersMain.OrderDate
ORDER BY OrdersMain.OrderDate;
Notice I have used an alias (OrdersMain) in the FROM clause. This will become necessary later, so I'll put it in now. The query will produce the original incorrect results:

	OrderDate
	CountOfCustomer

	1/17/2008
	9

	1/18/2008
	8

	1/19/2008
	5

Now, what I need to do is replace

Count(Customer) AS CountOfCustomer
with a subquery that produces the correct values for each OrderDate. I've already got such a query from my last post using the FROM clause method (Problem2). I can use it here:

SELECT Count(OrdersTemp.customer),OrdersTemp.orderdate
FROM (SELECT OrderDate, Customer FROM Orders GROUP BY OrderDate,
 Customer ORDER BY OrderDate) AS OrdersTemp
GROUP BY OrdersTemp.orderdate;
As before, I've aliased the FROM source, this time as OrdersTemp. This produces the following:

	CountOfcustomer
	orderdate

	3
	1/17/2008

	4
	1/18/2008

	2
	1/19/2008

Now, I've just got to get the two queries together. To make it more obvious what's going on, I'll show the original MainQuery in Blue, the SubQuery in Red, and additional changes necessary to merge the two in Green.

SELECT OrdersMain.OrderDate,
 (SELECT Count(OrdersTemp.Customer), OrdersTemp.orderdate
 FROM (SELECT OrderDate, Customer FROM Orders GROUP BY OrderDate,
 Customer ORDER BY OrderDate) AS OrdersTemp
 GROUP BY OrdersTemp.orderdate) AS CountOfCustomer
FROM Orders AS OrdersMain
GROUP BY OrdersMain.OrderDate
ORDER BY OrdersMain.OrderDate;
Now, I do need to make a few more modifications. A subquery in the field list can only return a single column and a single row, that is, just one value. But as is, the subquery produces two columns and three rows. What I need to do is match up the orderdate fields in both the main query and sub query, which I do my adding a WHERE Clause. I also have to remove orderdate from the subquery field list.

So I get the following:

SELECT OrdersMain.OrderDate,
 (SELECT Count(OrdersTemp.Customer), OrdersTemp.orderdate
 FROM (SELECT OrderDate, Customer FROM Orders GROUP BY OrderDate,
 Customer ORDER BY OrderDate) AS OrdersTemp
 WHERE OrdersMain.OrderDate = OrdersTemp.OrderDate
 GROUP BY OrdersTemp.OrderDate) AS CountOfCustomer
FROM Orders AS OrdersMain
GROUP BY OrdersMain.OrderDate
ORDER BY OrdersMain.OrderDate;
The final query:
SELECT OrdersMain.OrderDate,
 (SELECT Count(OrdersTemp.Customer)
 FROM (SELECT OrderDate, Customer FROM Orders GROUP BY OrderDate,
 Customer ORDER BY OrderDate) AS OrdersTemp
 WHERE OrdersMain.OrderDate = OrdersTemp.OrderDate
 GROUP BY OrdersTemp.OrderDate) AS CountOfCustomer
FROM Orders AS OrdersMain
GROUP BY OrdersMain.OrderDate
ORDER BY OrdersMain.OrderDate;
	OrderDate
	CountOfCustomer

	1/17/2008
	3

	1/18/2008
	4

	1/19/2008
	2

Wait a second. This is exactly what I got with the subquery itself. Why should I bother adding it into the main query?

The reason is the flexibility I talked about earlier. If I want to add a couple of additional fields, say a count of the orders and the total amount for each date, that is this:

	OrderDate
	CountOfCustomer
	CountOfOrderID
	SumOfAmount

	1/17/2008
	3
	9
	$7,080.85

	1/18/2008
	4
	8
	$6,989.54

	1/19/2008
	2
	5
	$6,554.50

It's as simple as adding a new field to the Main field list (in Purple)

SELECT OrdersMain.OrderDate,
 (SELECT Count(OrdersTemp.Customer)
 FROM (SELECT OrderDate, Customer FROM Orders GROUP BY OrderDate,
 Customer ORDER BY OrderDate) AS OrdersTemp
 WHERE OrdersMain.OrderDate = OrdersTemp.OrderDate
 GROUP BY OrdersTemp.OrderDate) AS CountOfCustomer,
 Count(OrdersMain.OrderID) AS CountOfOrderID,
 Sum(OrdersMain.Amount) AS SumOfAmount
FROM Orders AS OrdersMain
GROUP BY OrdersMain.OrderDate
ORDER BY OrdersMain.OrderDate;

So depending on how complex your aggregate query is it may be simpler to use the Field List method. By comparison, adding each new column using the FROM clause method requires a complete re-working of the query.

This method also more accurately mimics the Count Distinct of T-SQL which also works at the field list level.
User-Defined Field Method

User-Defined Function
A user-defined function is simply a piece of VBA code that you can call from other code or from a query. In this case, I'll call it from a query.

This process works pretty much like the built-in Domain functions like DCount, DMax, DLookup, etc. If you're unfamiliar with Domain Functions, you can read more in my post: Domain Functions Demystified.

Into the function, I send the name of a field, a table (or query), and a Where clause (without the WHERE keyword), In addition, I also need to send the Group By clause (again without the GROUP BY keyword).

Then I take the query created in Subqueries in the Field List and build it in code with the addition of a WHERE clause that restricts the query to a single row matching the row being evaluated in the query. The evaluated query returns a single value.

Lastly, I open a recordset and return the value from the "countof" column from the function.

First of all, create the following Function in a General Module:

Function DistinctCount(FieldName As String, _
 TableName As String, _
 WhereClause As String, _
 GroupByClause As String) As Long
'declare variables
Dim db As DAO.Database
Dim rs As DAO.Recordset
Dim strSQL As String
On Error GoTo DistinctCount_Error
'set database variable to current database
Set db = CurrentDb
'create SQL string with function argument values
strSQL = "SELECT Count(Temp." & FieldName & ") as countof " & _
 " FROM (SELECT " & GroupByClause & ", Customer FROM " & _
 TableName & " GROUP BY " & GroupByClause & ", " & _
 FieldName & " ORDER BY " & GroupByClause & ") AS Temp " & _
 " WHERE " & WhereClause & _
 " GROUP BY " & GroupByClause

'open a recordset of the resultant SQL statement
Set rs = db.OpenRecordset(strSQL)
'if a record is found
If Not rs.EOF Then
 'return the value
 DistinctCount = rs!countof
Else
 'return -1 to indicate "no records"
 DistinctCount = -1
End If
On Error GoTo 0
 'destroy object variables
 Set rs = Nothing
 Set db = Nothing
 Exit Function
DistinctCount_Error:
 MsgBox "Error " & Err.Number & " (" & Err.Description & _
 ") in procedure DistinctCount of Module Module1"
End Function
Call the Function
Calling the function, from a query looks something like this in the Query Builder:

CountOfCustomer: DistinctCount("Customer","Orders","OrderDate =# " & [OrderDate] & "#","OrderDate")

In SQL view:

SELECT Orders.OrderDate, DistinctCount("Customer","Orders","OrderDate =# " & [OrderDate] & "#","OrderDate") AS CountOfCustomer, Count(Orders.OrderID) AS CountOfOrderID, Sum(Orders.Amount) AS SumOfAmount
FROM Orders
GROUP BY Orders.OrderDate
ORDER BY Orders.OrderDate;
Which results in the following:

	OrderDate
	CountOfCustomer
	CountOfOrderID
	SumOfAmount

	1/17/2008
	3
	9
	$7,080.85

	1/18/2008
	4
	8
	$6,989.54

	1/19/2008
	2
	5
	$6,554.50

How it works
The function runs for each row evaluated. For instance, in the above query, for 1/17/2008, the query that is created in the code looks like this:

SELECT Count(Temp.Customer) as countof FROM (SELECT OrderDate, Customer FROM Orders GROUP BY OrderDate, Customer ORDER BY OrderDate) AS Temp WHERE OrderDate =#1/17/2008# GROUP BY OrderDate
Which returns

	countof

	3

The SQL for the next row is:

SELECT Count(Temp.Customer) as countof FROM (SELECT OrderDate, Customer FROM Orders GROUP BY OrderDate, Customer ORDER BY OrderDate) AS Temp WHERE OrderDate =#1/18/2008# GROUP BY OrderDate
Which returns

	countof

	4

The SQL for the last row is:

SELECT Count(Temp.Customer) as countof FROM (SELECT OrderDate, Customer FROM Orders GROUP BY OrderDate, Customer ORDER BY OrderDate) AS Temp WHERE OrderDate =#1/19/2008# GROUP BY OrderDate
Which returns

	countof

	2

Crosstab Query Method
Note: In the comments section of Part 3: User-Defined Function, Patrick mentioned another method that uses a Crosstab Query. Even though I didn't develop it, I'm including it in this series for completeness. So, thank you, Patrick.

A crosstab query presents aggregated data in an easy-to-understand grid.

To create a simple Count Distinct as above, use the following SQL:

TRANSFORM Count(*) AS Cell
SELECT Count(cell) AS CountOfCustomer
FROM Orders
GROUP BY "Anything"
PIVOT Customer In (null);
To get the following result:

	CountOfCustomer
	<>

	4
	

More Complex Queries
The Crosstab can also be modified to produce a customer count grouped by the OrderDate:

TRANSFORM Count(*) AS Cell
SELECT OrderDate, Count(cell) AS CountOfCustomer
FROM Orders
GROUP BY OrderDate
PIVOT Customer In (null);

	OrderDate
	CountOfCustomer
	<>

	1/17/2008
	3
	

	1/18/2008
	4
	

	1/19/2008
	2
	

Problem: Additional Aggregation
However, in the other methods I've discussed, I was able to add additional aggregates to the query like this:

	OrderDate
	CountOfCustomer
	CountOfOrderID
	SumOfAmount

	1/17/2008
	3
	9
	$7,080.85

	1/18/2008
	4
	8
	$6,989.54

	1/19/2008
	2
	5
	$6,554.50

I can't figure out how to do that with the Crosstab query, so I'd say this method, although fast, is somewhat limited in terms of flexibility.

Patrick insists this method has MUCH better performance than the UDF method. Next time, I'll look at each of the methods and discuss their pros and cons, so we'll see.

Pros, Cons, and Performance

Comparison of the Methods
Each of these methods have advantages and disadvantages, and as promised, I'll address them here.

Subquery in FROM Clause
The main advantage of creating a subquery in the FROM clause is ease of use, that is, it's the easiest to figure out. It's possible to approach it step-wise by first removing the duplicates from the list to be counted. See Problem 1 in Subqueries the FROM Clause.

The main disadvantage is lack of flexibility. As I showed in Problems 2 and 3 in Subqueries the FROM Clause, you can't easily created other levels of aggregation nor simply add a second aggregate to the same level. The reason is you've pre-limited the values available, so you need to create extra levels of subqueries to compensate.

Over all, this method is useful for simple distinct counts, but not for more complex ones.

Subquery in Field List
The main advantage of create a subquery in the Field List is it's flexibility. Once you've created the initial query, adding a second aggregate can be added just like in any other aggregate query, that is, just add another field to the field list with an aggregate function.

The main disadvantage is that it's a little harder to figure out in the first place. The subquery must be a correlated subquery, which is conceptually more difficult. A correlated subquery is evaluated for each row in the main query, so it must be tied to the main query, and that's a more difficult concept.

This method is useful for more complex queries. It also more closely simulates the T-SQL Count Distinct, which also works at the Field List level. This means that if you need to upsize this query to T-SQL, it's as simple as replacing the subquery with the COUNT DISTINCT.

User-Defined Function
One advantage of with user-defined function is that once created, you don't have to figure out how to do a subquery for each query. You can simply call the function and send in the appropriate values. It also appears to perform fairly well, but I'll address performance below.

The main disadvantage is that it's fairly easy to produce an incorrect result. The Where and Group By arguments must match the main Where and Group By clauses of the main query or the value will be be incorrect. However, In an extremely complex query, this method may be useful to reduce the level of complexity in the main query.

Crosstab Query Method
If you're familiar with crosstab queries, this method is nice and clean. And it performs very well (see below).

But as I've noted before, the main problem is that you can't add additional aggregates. For instance, you can't show the sum of one field and the count distinct of another in the same query. This makes it more limited than the other methods.

Performance
First of all, it's silly to talk about performance without discussing indexes. On non-indexed fields, each of the methods will perform much worse. In this case, I indexed all of the fields involved in the aggregation: OrderID (primary key), Customer, and Order_Date.

When each of the methods were run against the sample data listed, they all ran nearly instantaneously. That table consists of 4 customers and 3 days, totaling 22 records.

To test the performance, I created a table consisting of 19 customers over the course of 30 days totaling 113,000 rows. Then I wrote a subroutine that opens each query, recording the time when it opens and when the query completes. The code looks like this:

Sub test()
Dim starttime As Date
Dim endtime As Date
'test From
starttime = Now
DoCmd.OpenQuery "TestFROMLarge"
endtime = Now
Debug.Print "TestFROMLarge: " & DateDiff("s", starttime, endtime)
DoCmd.Close acQuery, "TestFROMLarge"
'test UDF
starttime = Now
DoCmd.OpenQuery "TestUDF_Large"
endtime = Now
Debug.Print "TestUDF_Large: " & DateDiff("s", starttime, endtime)
DoCmd.Close acQuery, "TestUDF_Large"
'test Xtab
starttime = Now
DoCmd.OpenQuery "XTab_Prob2_Large"
endtime = Now
Debug.Print "XTab_Prob2_Large: " & DateDiff("s", starttime, endtime)
DoCmd.Close acQuery, "XTab_Prob2_Large"
'test FieldList
starttime = Now
DoCmd.OpenQuery "TestFieldListLarge"
endtime = Now
Debug.Print "TestFieldListLarge: " & DateDiff("s", starttime, endtime)
DoCmd.Close acQuery, "TestFieldListLarge"
End Sub
Running this code against the 100K table produced this:

TestFROMLarge: 1
TestUDF_Large: 1
XTab_Prob2_Large: 1
TestFieldListLarge: 8
That gives me some information, but not enough. So I created an even larger file. Still using the same 19 customers, but with data spanning a whole year. This new table had nearly 1 million records.

Running my test code against the 1M table produced this:

TestFROMLarge: 10
TestUDF_Large: 4
XTab_Prob2_Large: 6
TestFieldListLarge: 74
This file gives me the granularity to see differences. The first three still execute within similar time frames. The Field List method takes nearly 8 times longer.

Surprisingly, the User Defined Function performs the best of all of them. My expectation would have been that it was the slowest. Also surprisingly, the Field List method was the slowest. I would have thought that a correlated subquery would execute faster.

If you'd like to test this for yourself, I've included database with this article. Because of size considerations, it does not have the 1M table, so you'd have to create that yourself.

3

