Data Definition Language (DDL) DAO vs. SQL

Table of Contents

2Data Definition Language (DDL)

2DAO vs. SQL

3DDL Using SQL

3Drop Table

4Create Table

4Datatype key words:

4Alter Table

4Drop Index

4Create Index

4Create Primary Key

4Drop Relationship

5Create Relationship

5SQL Examples:

6DDL Using DAO

7Create Table

8Modify Table

8Create Database

9Delete Table

9Create Index

9Create Primary Key

10Delete Index

10Create Relationship

11Drop Relationship

11Create Table With AutoNumber PrimaryKey And Hyperlink

12Modify Field Names

Data Definition Language (DDL)
Data Definition Language (DDL) is a programmatic way to create and modify the database structure, that is, objects like tables, indexes, and relationships.

Before Access came along, DDL statements were the only way to modify the database structure in most relational database management systems. Access introduced the graphical user interface (GUI) to do most DDL functions. Because the Access GUI is so easy to use, most Access users never have reason to use DDL statements. However, there are circumstances under which it is advantageous to use DDL statements.

I use them a lot for automating data import processes. I can create a temporary table, import data to the temp table, change data types, remove indexes from the permanent table, append data from the temp to the permanent table, then rebuild the indexes -- all automatically, all in SQL code.

But that's not the only use. You can also use DDL to set the seed and interval for an autonumber field, to remotely change the structure of a back-end database (useful for multi-user databases), or make any other change to a production database. In a web environment, it can be used to add databases to an active website.
DAO vs. SQL

In Access, the two major methods are DAO methods and SQL Statements. DAO (Data Access Objects) is the object model that Access uses to programmatically manipulate the database and its data. (There are other object models you can use like ADO and ADO.net, but DAO is recommended for use with Access.) However, in many cases, you can also manipulate your database with in SQL statements. In general, SQL is more efficient than other methods, so if you can, it's recommended.
SQL DDL statements have a number of advantages over other methods of modifying the database structure. For one thing, is independent of the object model you're using (ADO, DAO, ADO.Net) and can be executed from different platforms like VBA, C++, C#, and so forth. And while there are minor differences in implementation, DDL is fairly standard to most database platforms like Access, SQL Server, Oracle, and Sybase. It is also easier to read and understand.

For instance, in SQL, I can create a simple table like so:

Sub CreateTableSQL()
Dim db As DAO.Database
Dim strSQL As String
 Set db = CurrentDb
 strSQL = "CREATE TABLE NewTable2 " & _
 "(NewField1 TEXT(100), " & _
 "NewField2 SINGLE);"
 db.Execute strSQL
End Sub
By comparison, in DAO, I need to do the following:

Sub CreateTableDAO()
Dim db As DAO.Database
Dim tblNew As DAO.TableDef
Dim fld As DAO.Field
 Set tblNew = db.CreateTableDef("NewTable")
 Set fld = tblNew.CreateField("NewField1", dbText, 100)
 tblNew.Fields.Append fld
 Set fld = tblNew.CreateField("NewField2", dbSingle)
 tblNew.Fields.Append fld
 db.TableDefs.Append tblNew
End Sub

SQL DDL statements have a number of disadvantages as well. Most importantly, you cannot set a number of Access specific table properties, like Validation Rules, Validation Text, Default values, and so forth. To do that, you have to use an object model like DAO.

DDL Using SQL

The SQL DDL statements can be executed in a query window, but the most useful way to do it is in VBA code. To do that, I need to build a string holding the SQL statement and run it using the Execute method of the database object. There are two ways to do this. The first (and simplest) is to run it directly against the built-in CurrentDb object:

Dim strSQL As String
strSQL = "<The SQL Statement here>"
CurrentDb.Execute strSQL

The other is a little more complicated, but in my opinion better. Create a database object and set it to the CurrentDb:

Dim db As DAO.Database
Dim strSQL As String
Set db = CurrentDb
strSQL = "<The SQL Statement here>"
db.Execute strSQL

This method is particularly useful when executing multiple SQL statements as I'll show later.

Drop Table

CurrentDb.Execute "DROP TABLE BOOKSQL;"

Create Table
'create a table with 4 fields and Primary key

Dim strSQL As String
strSQL = "CREATE TABLE BOOKSQL "
strSQL = strSQL & "(ISBN TEXT(13) CONSTRAINT PKey PRIMARY KEY, "
strSQL = strSQL & "Title TEXT(100), "
strSQL = strSQL & "Price CURRENCY, "
strSQL = strSQL & "PubID TEXT(10)); "
CurrentDb.Execute.Execute strSQL

Datatype key words:

Autonumber -- AUTOINCREMENT

Text -- TEXT(<length>)

Memo and Hyperlink - MEMO

Byte -- BYTE

Integer -- SHORT

Long integer -- LONG

Single -- SINGLE

Double -- DOUBLE

ReplicationID -- GUID

Date/Time -- DATETIME

Currency -- CURRENCY

Yes/No -- LOGICAL

OleObject -- OLEOBJECT
Alter Table

CurrentDb.Execute "ALTER TABLE PublisherSQL ADD PubAddress TEXT (50);"

CurrentDb.Execute "ALTER TABLE BookSQL ADD Cost CURRENCY;"

CurrentDb.Execute "ALTER TABLE BookSQL ADD PubDate DATETIME;"
Drop Index

CurrentDb.Execute "DROP INDEX idxTitle ON BookSQL;"

Create Index
CurrentDb.Execute "CREATE UNIQUE INDEX idxTitle ON BookSQL (Title);"

Create Primary Key

CurrentDb.Execute "CREATE UNIQUE INDEX PrimaryKey ON Books (BookID) WITH PRIMARY;"

Drop Relationship

CurrentDb.Execute "ALTER TABLE BookSQL DROP CONSTRAINT PubBook;"

Create Relationship

Dim strSQL As String
strSQL = "ALTER TABLE [BookSQL] "
 strSQL = strSQL & " ADD CONSTRAINT [PubBook] FOREIGN KEY (PubID) "
 strSQL = strSQL & " REFERENCES PublisherSQL (PubID);"
CurrentDb.Execute strSQL

SQL Examples:
Sub DropTables()

'deletes a Relationship and two tables

Dim db As DAO.Database

Set db = CurrentDb

db.Execute "ALTER TABLE BookSQL DROP CONSTRAINT PubBook;"

db.Execute "DROP TABLE PublisherSQL;"

db.Execute "DROP TABLE BookSQL;"

Set db = Nothing

End Sub

'---------------------------------
Sub BuildTables()

Dim db As DAO.Database

Dim strSQL As String

Set db = CurrentDb

'create PublisherSQL table

strSQL = "CREATE TABLE PublisherSQL "

strSQL = strSQL & "(PubID TEXT(10) CONSTRAINT PrimaryKey PRIMARY KEY, "

strSQL = strSQL & "PubName TEXT(100), "

strSQL = strSQL & "PubPhone TEXT(20));"

db.Execute strSQL

'create BookSQL table

strSQL = "CREATE TABLE BookSQL "

strSQL = strSQL & "(ISBN TEXT(13) CONSTRAINT PKey PRIMARY KEY, "

strSQL = strSQL & "Title TEXT(100), "

strSQL = strSQL & "Price MONEY, "

strSQL = strSQL & "PubID TEXT(10)); "

db.Execute strSQL

'create One-To-Many relationship between BookSQL and table

strSQL = "ALTER TABLE [BookSQL] "

strSQL = strSQL & " ADD CONSTRAINT [PubBook] FOREIGN KEY (PubID) "

strSQL = strSQL & " REFERENCES PublisherSQL (PubID);"

db.Execute strSQL

Set db = Nothing

End Sub

'---------------------------------
Sub DropIndex_Import_CreateIndex()

' this sample demonstrates removing an index, importing data, and

' re-creating the index.

Dim db As DAO.Database

Set db = CurrentDb

db.Execute "DROP INDEX idxTitle ON BookSQL;"

DoCmd.TransferText acImportDelim, "", "Books", _

CurrentProject.Path & "\Books.txt", True, ""

db.Execute "create unique index idxTitle on BookSQL(Title);"

Set db = Nothing

End Sub

'---------------------------------
Sub ModifyField()

'you can't directly modify a field in a table you have to:

'1) create a new field with the new properties

'2) copy the data from the old field to the new field

'3) delete the old field

'Note: if the field to be deleted is part of an index, that

'index must be dropped and then re-established on the new field

Dim db As DAO.Database

Set db = CurrentDb

db.Execute "alter table [Books Copy] add Title2 text(100);"

db.Execute "UPDATE [Books Copy] SET Title2 = Title;"

db.Execute "alter table [Books Copy] drop column Title;"

Set db = Nothing

End Sub

DDL Using DAO

DAO (Data Access Objects) works differently than SQL. DAO is an object model specific to Access (or rather for the MDB or ACCDB file types). One reason for using DAO over SQL is that you can set Access specific properties (like Default Value and Validation Rules) with it. Also, certain datatypes (like Hyperlink) can only be created with DAO.

In general, with DAO, you

1. Declare object variables (e.g., Table, Field, Property, etc.)

2. Instantiate the object (that is, create the object)

3. Append it to the appropriate Collections (that is, a table to the Tables Collection)

You can't create a Table without creating at least one Field, so you have to create and append the fields for the table before you append the table. If you set Properties for the field, you must do so before you append the field to the fields collection. So creating a table goes something like this:

1. Declare variables (Table, Field)

2. Instantiate Table

a. Instantiate Field 1

i. Instantiate Property 1

ii. Append Property 1

iii. Instantiate Property 2

iv. Append Property 2

b. Append Field1

c. Instantiate Field 2

i. Instantiate Property 1

ii. Append Property 1

d. Append Field 2

3. Append Table

So, a specific example might go something like this:

Create Table

Sub exaCreateTableDAO()
'DAO DDL example
'demonstrates creating a table, fields, properties
' Declare object variables
Dim db As DAO.Database
Dim tbl As DAO.TableDef
Dim fld As DAO.Field
Set db = CurrentDb
' Create the table (BooksDAO)
Set tbl = db.CreateTableDef("BooksDAO")
' Create a field (ISBN)
Set fld = tblNew.CreateField("ISBN", dbText, 13)
' Set field properties
fld.Required = True
' Append field (ISBN) to Fields collection
tbl.Fields.Append fld
' Create a field (Title)
Set fld = tblNew.CreateField("ISBN", dbText, 100)
' Set field properties
fld.Required = True
fld.AllowZeroLength = False
fld.DefaultValue = "Unknown"
' Append field (Title) to Fields collection
tbl.Fields.Append fld
' Append table (BooksDAO) to TableDef collection
db.TableDefs.Append tbl
End Sub
Modify Table
Modifying a table (that is, adding a new field or adding new properties to an existing field) is similar, except instead of instantiating a new table, you instantiate an existing table. When modifying an existing table or field, you do not need to append it to its collection.
Sub exaModifyTable()
'DAO DDL example
'demonstrates modifying a table by adding a field
' and modifying an existing field's property
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field
 Set db = CurrentDb
 ' Instantiate existing table (BooksDAO)
 Set tdf = db.TableDefs("BooksDAO")
 ' Create a field (Price)
 Set fld = tdf.CreateField("Price", dbCurrency)
 ' Append field to Fields collection
 tdf.Fields.Append fld
 ' Modify existing field (Title) with properties (validation rule
 ' and validation text)
 Set fld = tdf.Fields("Title")
 fld.ValidationRule = "Like 'A*' or Like 'Unknown'"
 fld.ValidationText = "Known value must begin with A"
End Sub
Modify Field Names

Sub exaModifyFieldNames()
'DAO DDL example demonstrates modifying field names
Dim db As DAO.Database
Dim tdf As DAO.TableDef
Dim fld As DAO.Field

 Set db = CurrentDb
 Set tdf = db.TableDefs("MyTable")
 For Each fld In tdf.Fields
 fld.Name = fld.Name & "new"
 Next

End Sub

Create Database

Sub exaCreateDB()
'DAO DDL example
'demonstrates creating a database programmatically
Dim dbNew As DAO.Database
 Set dbNew = CreateDatabase _
 ("C:\classes\cis253\winter98\MoreBks", dbLangGeneral)
 dbNew.Close
End Sub

Delete Table

Dim db As DAO.Database
 Set db = CurrentDb
 db.TableDefs.Delete "tstBooks"
Create Index

Sub exaCreateIndex()
'DAO DDL example demonstrates creating an index

Dim db As DAO.Database
Dim tdf As DAO.TableDef
Dim idx As DAO.Index
Dim fld As DAO.Field

Set db = CurrentDb
Set tdf = db.TableDefs!Books
' Create index
Set idx = tdf.CreateIndex("PriceTitle")
' Append fields to index
Set fld = idx.CreateField("Price")
idx.Fields.Append fld
Set fld = idx.CreateField("Title")
idx.Fields.Append fld
' Append index to table
tdf.Indexes.Append idx

End Sub

Create Primary Key
Sub CreatePrimaryKey()
'DAO DDL example demonstrates creating an index

Dim db As DAO.Database
Dim tdf As DAO.TableDef
Dim idx As DAO.Index
Dim fld As DAO.Field

Set db = CurrentDb
Set tdf = db.TableDefs!Books
' Create index
Set idx = tdf.CreateIndex("PriceTitle")
' Append fields to index
Set fld = idx.CreateField("Price")
idx.Fields.Append fld
Set fld = idx.CreateField("Title")
idx.Fields.Append fld
' Make Index primary
idx.Primary = True
' Append index to table
tdf.Indexes.Append idx

End Sub

Delete Index

Sub DeleteIndex()
'DAO DDL example demonstrates creating a composite primary key

Dim db As DAO.Database
Dim tdf As DAO.TableDef
 Set db = CurrentDb
 Set tdf = db.TableDefs!Books
 tdf.Indexes.Delete "PriceTitle"

End Sub
Create Relationship

Sub exaRelations()

'DAO DDL example creating a Relationship

Dim db As DAO.Database
Dim rel As DAO.Relation
Dim fld As DAO.Field
Set db = CurrentDb

' Create relation
Set rel = db.CreateRelation("PublisherRegions", _
"PUBLISHERDAO", "SALESREGIONS")

' Set referential integrity w/ casc updates
rel.Attributes = dbRelationUpdateCascade

' Specify key field in KeyTable (Publishers)
Set fld = rel.CreateField("PubID")

' Specify foreign key in ForeignTable (SalesRegions)
fld.ForeignName = "PubIDFK"

' Append field to Relation
rel.Fields.Append fld

' Append relation to Relations collection
db.Relations.Append rel

End Sub
Drop Relationship

Sub exaDeleteRelation()

'DAO DDL example Deleting a Relationship
 Dim db As Database
 Set db = CurrentDb
 db.Relations.Delete "PublisherRegions"

End Sub

Create Table With AutoNumber PrimaryKey And Hyperlink

Sub exaCreateTableWithAutoNumberAndHyperlink()
'DAO DDL example demonstrates creating a table, fields, properties
Dim db As DAO.Database
Dim tblNew As DAO.TableDef
Dim fld As DAO.Field

 ' Create the table and a field
Set db = CurrentDb()
Set tblNew = db.CreateTableDef("NewTable")
Set fld = tblNew.CreateField("AutoField", dbLong)

 ' Set field properties
fld.Required = True
fld.Attributes = dbAutoIncrField

 ' Append field to Fields collection
tblNew.Fields.Append fld
 ' Create Primary Key
Set idx = tblNew.CreateIndex("PrimaryKey")

 ' Append fields to index
Set fld = idx.CreateField("AutoField")
idx.Fields.Append fld

 ' Make Index primary
idx.Primary = True

 ' Append index to table
tblNew.Indexes.Append idx
 ' Create hyperlink field
Set fld = tblNew.CreateField("HyperField", dbMemo)

 ' Set field properties
fld.Attributes = dbHyperlinkField

 ' Append field to Fields collection
tblNew.Fields.Append fld

 ' Append table to TableDef collection
db.TableDefs.Append tblNew

End Sub

