Rolling Average in Query

Another value that is difficult to produce in a query, is the Rolling Average for a given number of records.

For instance, suppose I wanted to display a rolling average for the last 12 weeks for the table below:

[image:]

For Week 26, I need to display the average for weeks 15-26 (39.85). For Week 25, it would be the average for weeks 14-25 (43.85), and so forth. For weeks with less than 12 in the recordset, it will average only those weeks available. So Week 9 would only average weeks 7-9 (53.67).

In other words, this:

[image:]

The problem is that SQL does not have positional notation like Excel does. There's no way to simply point to the record above the one you're on -- or the previous 12, for that matter. The only way to do it is to somehow identify the previous records in terms of a Where condition. Since this Where condition must be evaluated for each line, O can do this with a domain aggregate function or a correlated subquery. In this case, two domain functions and two subqueries.

For either method to work, I must have a unique record ID. The Autonumber field is ideal for this. It doesn't matter if there are gaps in the sequence, but I have to sort on this field, so there cannot be duplicates and they must be in the order I need displayed. In the above sample, ID fits the bill.

Domain Function Method (DCount and DAvg)

Domain Aggregate functions are an Access-only method to return statistical information about a specific set of records, whether from a table or query. DCount in particular will return the number of records in a given recordset. DAvg will return the average of a given recordset. Both functions have three arguments: 1) an expression that identifies a field, 2) a string expression that identifies a domain (that is, the table or query), and 3) a Criteria, which is essentially an SQL Where clause without the word WHERE.

There are two different ways to produce Rolling Averages, the first uses stacked queries, the second does it all in one. Understanding the stacked query method will help you understand the all-in-one method.

Stacked Queries

The first step in this process is to create an unbroken sequence number for the records. It must be unbroken so I can subtract 12 from it to average the correct number of weeks. The second step produces the average.

Step1: DCount_RollingAverage1:

SELECT DCount("ID","Table1","ID <=" & [ID]) AS Sequence, tWeek, tValue
FROM Table1
ORDER BY ID DESC;

The Order By clause in the query is important. This will sort the query on the ID field. I'll need to have that order to use the criteria argument in the DCount.

Here's how it works.

For each record in the query, Access runs the DCount function. The DCount returns the number of records in the domain where the ID in the function is less than or equal to the ID in that record of the query.

So in the first record, the ID is 1. So the DCount opens the domain (essentially opens the Customers table again) and it sees that there is only 1 record whose ID is less than or equal to 1. So it returns 1.

Then it processes the second record. The ID of that record is 3, and the DCount function sees that there are only 2 records which have an ID whose value is less than or equal to 2. So it returns 2.

It is not necessary that the Order By field is an unbroken sequence. As long as that field has unique values and is sorted, it will work.
.

[image:]

Step2: DCount_RollingAverage2:

Now that DCount_RollingAverage1is a recordset with an unbroken sequence, I can use as it as the record source for the query that will create the rolling averages:

SELECT Sequence, tWeek, tValue, DAvg("tValue","[DCount_RollingAverage1]","Sequence Between " & [Sequence] & " And " & [Sequence]-12) AS [12-Week Rolling Average]
FROM DCount_RollingAverage1;

For each record in the query, Access runs the DAvg function. The DAvg returns the average for the range of values between the sequence number and the sequence number minus 12.

So in the first record, the Sequence is 26. So the DAvg opens the domain (essentially opens Table1 again) and averages weeks 15-26. Then it processes the second record, averaging weeks 14-25 and so forth.

[image:]

Subquery method

A subquery is a SELECT statement nested inside a SELECT, SELECT...INTO, INSERT...INTO, DELETE, or UPDATE statement or inside another subquery. A correlated subquery essentially opens a new instance of the table with an alias which allows you to compare the results of the subquery to results from the main query.

Like the domain function example, this can be done with both stacked queries or combined into a single query.

Stacked Queries

My first query (SubQuery_RollingAverage1) would look like this:

SELECT (Select Count(1) FROM Table1 T1
WHERE T1.ID <=Table1.ID) AS Sequence, tWeek, tValue
FROM Table1
ORDER BY ID DESC;

[image:]

Let's break this apart.

"Select Count(1)" will simply count the records in the resultant recordset.

"Select Count(1)" creates an alias of the Customers table called "A".

"WHERE T1.ID <=Table1.ID " compares the value of ID from the subquery to the value of ID in the record of the outer query. Then Count(1) will count those records.

So in the first record, the main query ID value is 1. The subquery counts the number of records whose value is less than or equal to 1. Since there is only one such record, it returns 1. In the second record, the subquery finds only 2 records whose value is less than or equal to 2 (the ID of the second record), and so forth to the end of the query.

The second query (SubQuery_RollingAverage2) produces the averages:

SELECT RAQ1.Sequence, RAQ1.tWeek, RAQ1.tValue, (SELECT Avg(tValue) FROM SubQuery_RollingAverage1
 WHERE sequence between RAQ1.sequence and RAQ1.sequence-12) AS [12-Week Rolling Average]
FROM SubQuery_RollingAverage1 AS RAQ1;

[image:]

[bookmark: _GoBack]All-in-One Query

SELECT RAQ.Sequence, RAQ.tWeek, RAQ.tValue,
 (SELECT Avg(tValue) FROM
 (SELECT
(Select Count(1) FROM Table1 T1
WHERE T1.ID <=Table1.ID) AS Sequence, tWeek, tValue
 FROM Table1
 ORDER BY ID DESC)
 WHERE sequence between RAQ.sequence and RAQ.sequence-12) as RollingAverage
FROM
 (SELECT
 (Select Count(1) FROM Table1 T1
WHERE T1.ID <=Table1.ID) AS Sequence, tWeek, tValue
 FROM Table1
 ORDER BY ID DESC) AS RAQ;

[image:]

So which method should you use, domain function or correlated subquery?

That depends. Of the two, the DMax method is slower, but the recordset is updateable. The correlated subquery is the faster method, but it returns a non-updateable recordset. However, it should be noted that against a large dataset, neither method will be very fast!

image5.png
= subQuery_RollingAveragel

(4 Week
Week 26

Record: W

19 Week 25
18 Week 24
17 Week 23
16 Week 22
15 Week 21
14 Week 20
13 Week 19
12 Week 18
11 Week 17
10 Week 16
9 Week 15
8 Week 14
7 Week 13
6 Week 12
5 Week 11
4 Week 10
3 Week 9
2 Week 8
1 Week 7

Tot20 | »

]

& No Filter

Searc

image6.png
= subQuery_RollingAverage2

[4 Week -
Week 26
19 Week 25
18 Week 24
17 Week 23
16 Week 22
15 Week 21
14 Week 20
13 Week 19
12 Week 18
11 Week 17
10 Week 16
9 Week 15
8 Week 14
7 Week 13
6 Week 12
5 Week 11
4 Week 10
3 Week9
2 Week 8
1 Week 7

Record: W < [Lof20 | »

Value

]
10
11

Search

_ =
RolingAverage -
39.8461538461538
43.8461538461538
48.4615384615385
47.6923076923077
45.4615384615385
46.1538461538462
45.4615384615385
48.5384615384615
46.1666666666667
42.3636363636364
4553
423333333333333
4325
45.8571428571429
43.1666666666667
376
44
53.6666666666667
4853
62

x

image7.png
51 SubQuery_RolingAverageCombined

o B %

tWeek | tvalue

18 Week 24
17 Week 23
16 Week 22
15 Week 21
14 Week 20
13 Week19
12 Week18
11 Week17
10 Week 16
9 Week15
8 Week 14
7 Week13
6 Week 12
5 Week 11
4 Week 10
3 Weeks
2 Weeks
1 Week7

Record: H_<[10f20 | » W | & NoFilter

BIRRUER

®E

2oe

BERGR N

Search

12-Week Rolling Average -
29.85
43.85
48.45
47.69
45.45
4615
45.45
8.5
46.17
42.36
45.50
4233
3.5
5.8
.17
37.60
44.00
53.67
48.50
62.00

image1.png
3 Tablel

[T wesk o wee -

89 Week 26
88 Week 25
87 Week 24
86 Week 23
85 Week 22
84 Week 21
83 Week 20
82 Week 19
81 Week 18
80 Week 17
79 Week 16
55 Week 15
54 Week 14
53 Week 13
47 Week 12
46 Week 11
28 Week 10
27 Week9
2 Weeks
1 Week7

=)

BIRRGER

®E

2oe

BERGR N

T T

image2.png
51 SubQuery_RollingAverageCombined

o B %

<] tvalue

88 Week 25
87 Week 24
86 Week 23
85 Week 22
84 Week 21
83 Week 20
82 Week 19
81 Week 18
80 Week 17
79 Week 16
55 Week 15
54 Week 14
53 Week 13
47 Week 12
46 Week 11
28 Week 10
27 Week9
2 Weeks
1 Week7
Record: K< 10f20 | » W | & NoFilter

BIRRUER

®E

2oe

BERGR N

Search

12-Week Rolling Average -
29.85
43.85
48.45
47.69
45.45
4615
45.45
8.5
46.17
42.36
45.50
4233
3.5
5.8
.17
37.60
44.00
53.67
48.50
62.00

image3.png
=5 DCount RollingAveragel
tWeek tvalue
Week 26
Week 25
Week 24
17 Week 23
16 Week 22
Week 21
Week 20
Week19
Week 18
1 Week 17
10 Week 16
5 Week 15
B Week 14
7 Week 13
5 Week 12
s Week 11
n
B
2
1

19
18

BIRRGER

15
1
13
12

®E

2oe

Week 10
Week9
Weeks
Week7

BERGR N

*

Record: K< 1of20 | » ¥ i | G NoFiter | Search

image4.png
= DCount_RollingAverage2

(4 Week -
Week 26

19
18
17
16
15
14
13

Record: W

Week 25
Week 24
Week 23
Week 22
Week 21
Week 20
Week 19
Week 18
Week 17
Week 16
Week 15
Week 14
Week 13
Week 12
Week 11
Week 10
Week 9

Week §

Week 7

Lotz | » »

10 39.846153846
11 43.846153846
22 48.461538461
44 47.692307692
5545461538461
44 46.153846153
22/45.461538461
77 48.538461538
88 46.166666666
11 42363636363
74455
3542333333333
254325
62/45.857142857
71 43.166666666
12376

1544

64 53.666666666
35485

6262

Search

