Rolling Average in Query

Another value that is difficult to produce in a query, is the Rolling Average for a given number of records.

For instance, suppose I wanted to display a rolling average for the last 12 weeks for the table below:

[image:]

For Week 26, I need to display the average for weeks 15-26 (39.85). For Week 25, it would be the average for weeks 14-25 (43.85), and so forth. For weeks with less than 12 in the recordset, it will average only those weeks available. So Week 9 would only average weeks 7-9 (53.67).

In other words, this:

[image:]

The problem is that SQL does not have positional notation like Excel does. There's no way to simply point to the record above the one you're on -- or the previous 12, for that matter. The only way to do it is to somehow identify the previous records in terms of a Where condition. Since this Where condition must be evaluated for each line, O can do this with a domain aggregate function or a correlated subquery. In this case, two domain functions and two subqueries.

For either method to work, I must have a unique record ID. The Autonumber field is ideal for this. It doesn't matter if there are gaps in the sequence, but I have to sort on this field, so there cannot be duplicates and they must be in the order I need displayed. In the above sample, ID fits the bill.

Domain Function Method (DCount and DAvg)

Domain Aggregate functions are an Access-only method to return statistical information about a specific set of records, whether from a table or query. DCount in particular will return the number of records in a given recordset. DAvg will return the average of a given recordset. Both functions have three arguments: 1) an expression that identifies a field, 2) a string expression that identifies a domain (that is, the table or query), and 3) a Criteria, which is essentially an SQL Where clause without the word WHERE.

There are two different ways to produce Rolling Averages, the first uses stacked queries, the second does it all in one. Understanding the stacked query method will help you understand the all-in-one method.

Stacked Queries

The first step in this process is to create an unbroken sequence number for the records. It must be unbroken so I can subtract 12 from it to average the correct number of weeks. The second step produces the average.

Step1: DCount_RollingAverage1:

SELECT DCount("ID","Table1","ID <=" & [ID]) AS Sequence, tWeek, tValue
FROM Table1
ORDER BY ID DESC;

The Order By clause in the query is important. This will sort the query on the ID field. I'll need to have that order to use the criteria argument in the DCount.

Here's how it works.

For each record in the query, Access runs the DCount function. The DCount returns the number of records in the domain where the ID in the function is less than or equal to the ID in that record of the query.

So in the first record, the ID is 1. So the DCount opens the domain (essentially opens the Customers table again) and it sees that there is only 1 record whose ID is less than or equal to 1. So it returns 1.

Then it processes the second record. The ID of that record is 3, and the DCount function sees that there are only 2 records which have an ID whose value is less than or equal to 2. So it returns 2.

It is not necessary that the Order By field is an unbroken sequence. As long as that field has unique values and is sorted, it will work.
.

[image:]

Step2: DCount_RollingAverage2:

Now that DCount_RollingAverage1is a recordset with an unbroken sequence, I can use as it as the record source for the query that will create the rolling averages:

SELECT Sequence, tWeek, tValue, DAvg("tValue","[DCount_RollingAverage1]","Sequence Between " & [Sequence] & " And " & [Sequence]-12) AS [12-Week Rolling Average]
FROM DCount_RollingAverage1;

For each record in the query, Access runs the DAvg function. The DAvg returns the average for the range of values between the sequence number and the sequence number minus 12.

So in the first record, the Sequence is 26. So the DAvg opens the domain (essentially opens Table1 again) and averages weeks 15-26. Then it processes the second record, averaging weeks 14-25 and so forth.

[image:]

Subquery method

A subquery is a SELECT statement nested inside a SELECT, SELECT...INTO, INSERT...INTO, DELETE, or UPDATE statement or inside another subquery. A correlated subquery essentially opens a new instance of the table with an alias which allows you to compare the results of the subquery to results from the main query.

Like the domain function example, this can be done with both stacked queries or combined into a single query.

Stacked Queries

My first query (SubQuery_RollingAverage1) would look like this:

SELECT (Select Count(1) FROM Table1 T1
WHERE T1.ID <=Table1.ID) AS Sequence, tWeek, tValue
FROM Table1
ORDER BY ID DESC;

[image:]

Let's break this apart.

"Select Count(1)" will simply count the records in the resultant recordset.

"Select Count(1)" creates an alias of the Customers table called "A".

"WHERE T1.ID <=Table1.ID " compares the value of ID from the subquery to the value of ID in the record of the outer query. Then Count(1) will count those records.

So in the first record, the main query ID value is 1. The subquery counts the number of records whose value is less than or equal to 1. Since there is only one such record, it returns 1. In the second record, the subquery finds only 2 records whose value is less than or equal to 2 (the ID of the second record), and so forth to the end of the query.

The second query (SubQuery_RollingAverage2) produces the averages:

SELECT RAQ1.Sequence, RAQ1.tWeek, RAQ1.tValue, (SELECT Avg(tValue) FROM SubQuery_RollingAverage1
 WHERE sequence between RAQ1.sequence and RAQ1.sequence-12) AS [12-Week Rolling Average]
FROM SubQuery_RollingAverage1 AS RAQ1;

[image:]

[bookmark: _GoBack]All-in-One Query

SELECT RAQ.Sequence, RAQ.tWeek, RAQ.tValue,
 (SELECT Avg(tValue) FROM
 (SELECT
(Select Count(1) FROM Table1 T1
WHERE T1.ID <=Table1.ID) AS Sequence, tWeek, tValue
 FROM Table1
 ORDER BY ID DESC)
 WHERE sequence between RAQ.sequence and RAQ.sequence-12) as RollingAverage
FROM
 (SELECT
 (Select Count(1) FROM Table1 T1
WHERE T1.ID <=Table1.ID) AS Sequence, tWeek, tValue
 FROM Table1
 ORDER BY ID DESC) AS RAQ;

[image:]

So which method should you use, domain function or correlated subquery?

That depends. Of the two, the DMax method is slower, but the recordset is updateable. The correlated subquery is the faster method, but it returns a non-updateable recordset. However, it should be noted that against a large dataset, neither method will be very fast!

image5.png

image6.png

image7.png

image1.png

image2.png

image3.png

image4.png

