Top Query Revealed
by Roger Carlson

Contents

2Introduction

2Simple Top Query

4Top Query based on Aggregate Values

4Simple Top Query With Where Clause

4Top Query Problem: Ties

6Top Query By Group

7Top Query By Group Problem: Ties

8Top Query to find Random Records

8Create a Parameter for Top Value?

10Conclusion

Introduction
SQL, the query language of Microsoft Access, has many powerful, yet little known features. One of these is the Top Query. A Top query allows you to limit the results of a query to a certain number (or percentage) of records.
The term "top" is deceiving, because it implies "largest" values. However, this is not strictly the case. You can choose the top largest values or the top smallest values. As we will see later, you can even choose random records.
Simple Top Query
To create a TOP query in SQL, add the TOP predicate immediately following the SELECT keyword followed by the number of records you want to see:
 SELECT TOP 10 * FROM Invoices
But that's not the end of it. To define what is "top", you must sort on one or more fields, using use DESC for largest numbers and ASC for smallest numbers. (Technically, you don't need to add ASC if you wanted the smallest numbers because ascending order is default.) Adding that, the whole query looks like this:
 SELECT TOP 10 * FROM Invoices ORDER BY [Total Price] DESC;
This will return 10 records with the largest values in the Total Price field. But you can also choose to see the top (or bottom) percent. So if I wanted to see the top 5% best sellers, I could do this:

 SELECT TOP 5 PERCENT * FROM Invoices ORDER BY [Total Price] DESC;
Although I used the asterisk (*) in the above queries, I did so only for simplicity. Like any query, you can also include a field list in your query, like so:

SELECT TOP 10 Account, OrderNum, [Pairs Shipped], [Total Price]

FROM Invoices

ORDER BY [Total Price] DESC;
You are not limited to the SQL view of a query to create a Top query, however. To create a TOP query in the Query Builder, open the Query Properties and look for the TOP property. See Figure 1.
[image: image1.jpg]
Figure1: Shows the Query Builder window to create a Top query.
The drop down box gives you suggestions, but you are not limited to the values in the list. Choosing All, removes the Top predicate from the SQL statement and returns the query to a normal Select query.
The results of this query, whether created in the Query Builder or directly in SQL can be seen in Figure 2.

[image: image2.jpg]
Figure2: Results of simple Top query.

Top Query based on Aggregate Values

As useful as this is, you will notice that the same customer (or Account) is represented many times in Figure 2. What if we wanted to find the top 5 Accounts in terms of total sales rather than individual invoices? The solution is to use a Totals query.

SELECT TOP 5 Account, Sum([Total Price]) AS [SumOfTotal Price]

FROM Invoices

GROUP BY Account

ORDER BY Sum([Total Price]) DESC;
The result of this query can be seen in Figure 3.

[image: image3.jpg]
Figure 3: Result of top 5 accounts by total sales.
Simple Top Query With Where Clause

I'm not limited to showing the top values for all invoices. I can also narrow the scope of the query with a Where clause just as you can with any Select query. For instance, if I wanted to see the top 3 invoices of a single Account (say, 237001), my query would look like this.

SELECT TOP 3 Account, OrderNum, [Total Price]

FROM Invoices

WHERE Account=237001

ORDER BY [Total Price] DESC;
[insert figure 5]

Result of top 3 invoices for Account 237001.

Top Query Problem: Ties

One problem with Top queries becomes apparent when there are duplicates in the top values. When this happens, the query will return more values than asked for. For instance, the following query will produce four values, rather than three because there are two orders with a total price of $27.50.
SELECT TOP 3 Account, OrderNum, [Total Price]

FROM Invoices

WHERE Account=237001

ORDER BY [Total Price] DESC;
When asked for the top three values, Access can't decide which of the two duplicates is in the top three, so it includes both of them. Figure 4 shows the result.
[image: image4.jpg]
Figure 4: Result of a query asking for the top three values when there is a tie. Four records are returned.
The solution is to add an additional field to the Order By clause.

SELECT TOP 3 Account, OrderNum, [Total Price]

FROM Invoices

WHERE Account=237001

ORDER BY [Total Price] DESC, OrderNum DESC;
In Figure 5, you'll see that by adding OrderNum to the Order By clause, it does in fact return three values. Since I used DESC in the clause, it returned the larger of the duplicated order numbers: 542724. If I had used ASC (or left it blank) it would have returned 542723 instead.

[image: image5.jpg]
Figure 5: Top 3 query with one of the duplicates removed.
Top Query By Group

Another useful thing to do with a Top query is to return the top values for each of a group of data. Suppose instead of the top 3 values for a particular Account, you wanted the top 3 values for all Accounts.

To do this, you need a correlated subquery. A subquery is a SELECT statement nested inside a SELECT, SELECT...INTO, INSERT...INTO, DELETE, or UPDATE statement or inside another subquery. A correlated subquery opens a separate instance of the table for each record in the main query, allowing you to compare the results of the subquery to results from the main query.
In this case, our subquery looks like this:

SELECT TOP 3 [Total Price]
FROM Invoices I2
WHERE Invoices.[Account] = I2.[Account]
ORDER BY I2.[Total Price] DESC
The key here is the From clause:

FROM Invoices I2
This creates an "alias" for the table, renaming it I2. This is important because when we embed this query within another query also based on the Invoice table, it needs to know which instance of Invoices we are asking for.

If we run the subquery as is, it will ask us for the value of Invoices.[Account] in a parameter prompt. If we give it an account number, say 391002, it will return the top 3 values for that account.
But when we embed this query in another query, instead of prompting us for the account number, it will take the account number from the each record of the main query, match it to the subquery, and return the top values for that record. The complete query looks like this:
SELECT Account, OrderNum, [Total Price]

FROM Invoices

WHERE [Total Price] In
(SELECT TOP 3 [Total Price]
FROM Invoices I2
WHERE Invoices.[Account] = I2.[Account]
ORDER BY I2.[Total Price] DESC)

ORDER BY Account, [Total Price] DESC;
And returns the values in Figure 6.

[image: image6.jpg]
Figure 6: Shows the result of the query to show the top 3 invoices for each Account. Notice, however that account 237001 has 4 values. The duplicate problem has resurfaced.
Top Query By Group Problem: Ties
But as you can see in Figure 6, the problem of duplicates has reared its head again. Unfortunately, the solution is not the same. Simply adding a second field to the Order By clause of the subquery, doesn't work; not by itself anyway. However if we add to this what we learned about using a Totals query to return aggregate values, we can find a solution.
In our previous Totals query, we used the Sum aggregate function. This time, however, we'll use a different aggregate function. The Max aggregate function returns just the maximum value of a group rather than summing the group. Adding this to our main query, we get this.
SELECT Account, Max(OrderNum) AS MaxOfOrderNum, [Total Price]

FROM Invoices

GROUP BY Account, [Total Price]

HAVING [Total Price] In
(SELECT TOP 3 [Total Price]
FROM Invoices I2
WHERE Invoices.Account = I2.Account
ORDER BY I2.[Total Price] DESC, I2.OrderNum DESC)

ORDER BY Account, [Total Price] DESC;
So adding the aggregate function to find the maximum OrderNum in the main query and adding a sort on OrderNum in the subquery solves the problem and we get output like Figure 7.
[image: image7.jpg]
Figure 7: Solution to the duplicates problem in a top query by group. Notice that account 237001 now has only 3 records and the number of records returned is 378 rather than 403.

Top Query to find Random Records
One surprising use for a Top query is to return a resultset of randomly selected records. It's also surprisingly simple. All you really need to do is sort on a random number, or rather, generate a random number in the Order By clause of the query.
So how do you get a random number? Fortunately, Access has a built in function called Rnd that will supply one.

To use Rnd, you need to supply it with a seed or an initial value to generate a pseudorandom number. Any numeric field will do for a seed value, but I generally use an autonumber, primary key field. In the case of the Orders table, that would be OrderID, but OrderNum would have worked as well.
SELECT TOP 10 Account, OrderNum, [Pairs Shipped], [Total Price]

FROM Invoices

ORDER BY Rnd(OrderID);
Every time this query is run, it will return 10 different records.

Create a Parameter for Top Value?

One question which often comes up with regard to Top queries is if you can supply the TOP predicate as a parameter like you can with Where criteria. Unfortunately, the answer is you can't, at least not with native SQL. You can, however, use code to modify your Top query programmatically.

To do this, we need to create a subroutine called TopParameter in a General Module. Of course, we could hard code it for a specific query, but it would be far more useful to have code that will modify any Top query that we supply it. So our code will include a QueryName argument that passes in the name of the query to be modified.
Sub TopParameter(QueryName As String)

On Error GoTo Err_TopParameter
Next, we'll have to declare some object and scalar variables.

Dim db As DAO.Database

Dim qdf As DAO.QueryDef

Dim strSQL As String

Dim strTopVal As String

Dim strSQLTemp As String

Dim StartPos As Integer

Then we need to open the current database and set the database object variable (db) to it. The QueryDefs method of the database object let's us open the query definition of the Top query we want to modify and set it to a querydef variable (qdf).

Set db = CurrentDb

Set qdf = db.QueryDefs(QueryName)
The SQL property of the QueryDef object reads the SQL statement of the query into a string variable so we can modify it.
strSQLTemp = qdf.SQL

Since every Top query has the TOP predicate with a space before and after it, we can find the position of the first space after the existing Top value. We need to do this because we need to remove the existing Top value and replace it with the new value.
StartPos = InStr(strSQLTemp, " TOP ") + 5
It's a good idea to test whether the query is actually a Top query or not, which we can do like this:

If StartPos = 5 Then

 MsgBox "Not a Top Query"

 GoTo Exit_TopParameter

End If

Now we can prompt the user for the new Top value with an inputbox.
strTopVal = InputBox("Enter TOP value:")

Next we need to read all the text after the old Top value into a variable. To do that, you find the first space after the TOP predicate like this:
strSQLTemp = Mid(strSQLTemp, InStr(StartPos, strSQLTemp, " "))

We've got all the pieces needed to rebuild the SQL string with the inputted Top value.
strSQL = "SELECT TOP " & strTopVal & strSQLTemp
Lastly, we'll set the SQL property of the query to the new SQL string, which will save the query with the new Top value.
qdf.SQL = strSQL

To finish it off, we'll add the Exit_TopParameter label which we used earlier to exit if it was not a Top query. In addition, we'll clean up the object variables and add error trapping.
Exit_TopParameter:

 db.Close

 qdf.Close

 Set db = Nothing

 Set qdf = Nothing

 Exit Sub

Err_TopParameter:

 MsgBox Err.Description

 Resume Exit_TopParameter

End Sub
To call the Query, we need to first call this code, then open the query, like this:
 Call TopParameter("MyTopQuery")

 DoCmd.OpenQuery "MyTopQuery", acNormal, acEdit
And that's it. Every time the code is run, it prompts for a new Top value, modifies, then opens the query.

Conclusion

The Top query is a powerful tool to add to your SQL arsenal. With it, you can return a specific number of records, see your top or bottom performers on aggregated values, return top values for groups, and even return randomly selected records. And although there is no built in way to do it, with a little programming expertise, you can even make your Top query interactive.
